Why LLMs can't really build software 🔥 Горячее 💬 Длинная дискуссия
Почему LLM не могут строить ПО
Эффективный инженер постоянно прокручивает цикл:
- формирует ментальную модель требований,
- пишет код,
- проверяет, что он реально делает,
- сверяет модели и правит код или требования.
LLM умеют писать и обновлять код, запускать тесты, логировать, но не умеют держать в голове ясную модель. Они путаются: считают, что всё работает, не понимают, где ошибка — в коде или в тесте, и при раздражении сносят всё и начинают заново. Человек же, столкнувшись с проблемой, может «свернуть» контекст, сфокусироваться на детали, затем вернуться к общей картине.
Даже если модели станут мощнее, им нужно научиться так же «держать в памяти» и переключаться между уровнями детализации. Сейчас они страдают от выпадения контекста, пристрастия к свежим фактам и галлюцинаций. Работа над «памятью» идёт, но пока LLM не понимают происходящего и не могут сравнивать две похожие модели, чтобы решить, что менять.
LLM полезны: быстро генерируют код и документацию, справляются с простыми задачами. В сложных случаях человек всё равно должен контролировать требования и проверять результат. В Zed верят в совместную работу человека и агента, но руль остаётся за инженером, а LLM — лишь инструмент.
Комментарии (426)
- LLM хороши как инструменты-ассистенты: быстро пишут boilerplate, находят мелкие ошибки, экономят время на рутине.
- Главный недостаток — неспособность удерживать и «поддерживать» целостную ментальную модель задачи; контекст «размывается» или меняется непредсказуемо.
- Поэтому при росте кодовой базы отладка превращается в «чтение спагетти», и инженер всё равно вынужден начинать заново.
- Решение — не «больше контекста», а системы-обёртки: TDD-циклы, пошаговое планирование, документация-модель, строгие промпты.
- Вывод: сейчас LLM заменяют джунов и Google-поиск, но полноценное ПО без человека, который держит «теорию» проекта в голове, построить не могут.
GPTs and Feeling Left Behind
Читая очередной пост о том, как ИИ пишет целые библиотеки, я чувствую себя отстающим и решаю попробовать. Результат разочаровывает: несколько часов с моделью не дают даже половины задачи, которую я руками делаю за 25 минут.
Сравнение с Vim не работает: первый день в Vim я хоть медленно, но писал. С GPT могу день потратить и не получить ничего полезного.
Модели хороши для подбора слова, аннотации типа или поиска бага в одной функции. Но стоит задаче стать сложнее, как ИИ выдаёт мусор: импортирует несуществующие библиотеки, советует «написать самому» и при каждом исправлении вносит новые ошибки.
На Hacker News снова хвалят GPT, и я не могу совместить их опыт со своим. Кажется, что мне врут: «это молот неразрушимый», а в руках — бумажная фигурка, которой даже помидор не раздавить.
Комментарии (132)
- Кто-то восторгается Cursor/Claude и быстро набирает MVP, кто-то считает LLM-генерацию «тысячами строк мусора» и возвращается к ручному коду.
- Разница во впечатлениях объясняется выбором модели, способом взаимодействия и характером задач: новые мелкие проекты vs. огромные legacy-кодовые базы.
- Часть разработчиков использует LLM как «ускоренный Stack Overflow» и для рутинного бойлерплейта, другие отключают автодополнение из-за скрытых багов.
- Навык «prompt-инженерии» и контекст-менеджмента сравнивают с освоением Vim: сначала замедляет, потом ускоряет, но требует времени.
- Скептики упрекают маркетинг в FOMO и «газлайтинге», а сторонники считают, что просто нужно правильно выбрать инструмент и научиться с ним работать.
Live: GPT-5
-
Introducing GPT-5 — YouTube
-
Пропустить навигацию
-
Поиск / Поиск голосом
-
Войти
-
Смотреть позже • Поделиться • Копировать ссылку • Покупки
-
Нажмите, чтобы включить звук • 2x
-
Если воспроизведение не началось, перезапустите устройство.
-
Вы вышли из аккаунта. Просмотры могут влиять на рекомендации на ТВ. Чтобы избежать этого, отмените и войдите на YouTube на компьютере.
-
Отмена • Подтвердить
-
37:35 • 7 августа, 10:00 GMT-7
-
Далее • Прямой эфир запланирован • Играть
Introducing GPT-5
- OpenAI • Подтверждено • 1,65 млн подписчиков
- Подписаться • Подписаны
- 6 522 ожидают • Запланировано на 7 авг. 2025
- 1K • Поделиться • Скачать • Сохранить
- Комментарии отключены
Описание
-
Introducing GPT-5
-
Присоединяйтесь к Сэму Альтману, Грегу Брокману, Себастьену Бюбеку, Марку Чену, Янну Дюбуа, Брайану Фиоке, Ади Ганешу, Оливеру Годеману, Саачи Джайн, Кристине Каплан, Тине Ким, Элейн Я Ле, Фелипе Миллону, Мишель Покрасс, Якубу Пахоцки, Максу Шварцеру, Ренни Сонгу, Жожену Вану — они представят и продемонстрируют GPT‑5.
-
OpenAI: Видео • О канале • Twitter • LinkedIn
Комментарии (92)
- Участники обсуждают качество ИИ для повседневного программирования: один отмечает сильное превосходство Anthropic (Sonnet 3.7/4 и Claude Code), причём в Cursor опыт хуже, чем в самом Claude Code, и OpenAI‑модели он почти не использует.
- Есть надежда, что GPT‑5 сократит отставание OpenAI, хотя мнения пользователей сильно расходятся.
- Другой комментатор ожидает, что грядущие анонсы покажут радикальное влияние на рынок: веб‑ и JS/TS‑разработчики могут стать частично или полностью невостребованными.
- При этом подчёркивается, что речь ещё не об «AGI» — максимум о ~10% от обещанных возможностей AGI.
- Отмечается ночной «слив», указывающий на фокус на кодинге; предполагается, что для названия «GPT‑5» OpenAI должен предложить существенное преимущество над Anthropic.
Jules, our asynchronous coding agent 🔥 Горячее 💬 Длинная дискуссия
Google представила Jules — асинхронного ИИ-агента для программирования — для всех пользователей, завершив публичную бету. Агент выполняет задачи в фоновом режиме: пишет и рефакторит код, правит баги, настраивает пайплайны и документирует изменения, не требуя постоянного участия разработчика. Это помогает параллелить работу, ускорять итерации и снижать контекстные переключения.
Jules интегрируется с инструментами разработчиков, может брать на себя длинные задачи, делить их на шаги, сообщать о прогрессе и запрашивать уточнения только при необходимости. Доступен через Google Labs и ориентирован на повышение продуктивности как отдельных инженеров, так и команд, позволяя запускать больше экспериментальных веток и быстрее проводить ревью.
Комментарии (221)
- Пользователи жалуются на запутанные подписки Google: разные продукты (Jules, Gemini App/CLI, Code Assist) разбросаны между Workspace и GCP, цены и доступ скрыты или требуют согласий и биллинга.
- Опыт с Jules противоречивый: часть считает его слабее Claude Code, Copilot/Claude Sonnet и Gemini CLI (низкое качество кода, проблемы в монорепо, зацикливание, отсутствие кнопки STOP, баги UI), другие довольны асинхронным форматом и считают удобным для пачек задач, тестов и сайд‑проектов.
- Замечены регрессии: лимит задач на бесплатном плане снизили с 60 до 15; качество, по словам некоторых, упало после увеличения дневных лимитов на раннем превью.
- Пользователи хотят интеграции с GitHub (issues, комментирование PR для фидбэка), явного просмотра публичных улучшений кода и лучшей связности с Gemini CLI/Actions.
- Есть путаница в позиционировании: что такое «асинхронный кодовый агент», чем Jules отличается от Gemini CLI и с кем он конкурирует (Claude Code, Codex, Crush).
- Критика брендинга/UX: «детский» лендинг, слабый контраст, плохой пиксель‑арт; общее ощущение, что UI отстает от возможностей модели.
- Итоговое восприятие: интерес к формату асинхронных агентов есть, но текущая реализация Jules часто уступает Claude Code по скорости/качеству и стабильности; пользователи просят прозрачные тарифы и единый продуктовый опыт.
PHP: The Toyota Corolla of programming 💬 Длинная дискуссия
—
Комментарии (190)
Java is more akin to the Corolla. Utterly insipid (by design), lacking in refinements compared to competitors like the Mazda3, and made for people who just see it as a way to get from point A to point B.PHP is the Hyundai Elantra of programming. It used to be popular because of l
Комментарии (108)
New vibe coding definition just dropped! "Vibe-Coding is a dialogue-based coding process between a human and an AI where the human guides and the AI implements."Reminds me of Steve Yegge's short-lived CHOP - Chat Oriented Programming: https://sourcegraph.com/blog/chat-oriented-pr
Комментарии (102)
This is epic: :)From : https://github.com/ioccc-src/winner/blob/master/2024/kurdyuk...This code draws the current moon phase to the console. So if you’re a lycanthrope, you can monitor the phase of the moon.#include <time.h> #include <stdio.h> a,b=44,x, y,z;main() {!a ?a=2551443,
Комментарии (44)
Hey folks, this is the 7th book in a series of readings I run over Google Groups. There are about 1800 people in the group and 300-800 join each reading. While we often read books on database internals this one seems pretty relevant to any developer working on systems that scale.
6 weeks of Claude Code 🔥 Горячее 💬 Длинная дискуссия
—
Комментарии (590)
I have about two weeks of using Claude Code and to be honest, as a vibe coding skeptic, I was amazed. It has a learning curve. You need to learn how to give it proper context, how to chunk up the work, etc. And you need to know how to program, obviously. Asking it to do something