Hacker News Digest

Тег: #neural-networks

Постов: 4

ARM adds neural accelerators to GPUs (newsroom.arm.com)

  • Arm Neural Technology — первое в мире решение, встраивающее нейро-акселераторы в мобильные GPU Arm. С 2026 г. оно сокращает нагрузку на GPU до 50 % и открывает путь к ПК-качеству графики на смартфонах.
  • Neural Super Sampling (NSS) — стартовая функция: апскейл 540p → 1080p за 4 мс на кадр.
  • Открытый набор разработчика уже доступен: плагин Unreal Engine, эмулятор Vulkan, профайлеры, модели на GitHub и Hugging Face. Поддержка от Epic, Tencent, NetEase и др.
  • Расширения Vulkan добавляют «Graph Pipeline» для вывода нейросетей прямо в рендер-процесс.

by dagmx • 12 августа 2025 г. в 14:03 • 113 points

ОригиналHN

#arm#gpu#neural-networks#vulkan#unreal-engine#tensor-cores#npu#machine-learning#upscaling#graphics

Комментарии (17)

  • Идея: нейросеть превращает «сырую» графику в AAA-качество, экономя ресурсы инди-разработчиков.
  • Для работы нужно много тренировочных данных, уникальных для каждой игры.
  • Реализация может идти через расширения Vulkan/OpenCL, а не проприетарные API.
  • В железе задействуются GPU, Tensor-cores, NPU (матричные ускорители с FP4/INT4).
  • Arm анонсировала мобильный upscaler 540p→1080p за 4 мс, но чипы появятся лишь в 2026 г.

Hand-picked selection of articles on AI fundamentals/concepts (aman.ai)

  • Основы ИИ: статьи о полном цикле — от построения нейросетей до оценки результатов.
  • Алгоритмы/архитектуры: линейная и логистическая регрессия, k-ближайших соседей, кластеризация, SVM, наивный Байес, деревья решений, ансамбли, GAN, диффузия, GNN, внимание, CNN, RL, MoE, SSM, агенты, FlashAttention, ускорение моделей, спекулятивное декодирование, кросс-валидация.
  • Данные/обучение: сэмплирование, дисбаланс, нормализация, парадигмы обучения, инициализация Xavier, регуляризация, градиентный спуск, функции активации и потерь, дообучение, разбиение данных, batchnorm, dropout, двойной спуск, LoRA, распределённое обучение.
  • Речь: обработка речи.
  • Зрение: ViT, рецептивное поле, ResNet, генерация изображений GPT-4o.
  • NLP: эмбеддинги, задачи NLP, токенизация, трансформеры, LLM, RAG, RLHF, перевод, графы знаний, обнаружение галлюцинаций, NER, RAG, LLMOps, бенчмарки.
  • Мультимодальность: VLM, архитектуры VLM, управление компьютером.
  • Модели: BERT, GPT, CLIP, Meena, ChatGPT, GPT-4, LLaMA, Alpaca, Gemini, Toolformer, Visual ChatGPT, TaskMatrix, BigBird, o1, DeepSeek, Gemma 3n.
  • Оценка: метрики, F-beta, A/B-тесты.
  • MLOps: дрейф данных, инструменты и тесты MLOps.
  • On-device ИИ: компрессия, PII, федеративное обучение, дифференциальная приватность, трансформеры на устройстве.
  • Управление проектами: OKR, RICE, диаграммы Ганта, управление проектами.
  • Разное: «Топ-30 Ильи Сацкевера».

by vinhnx • 11 августа 2025 г. в 08:59 • 185 points

ОригиналHN

#neural-networks#machine-learning#deep-learning#gan#gnn#cnn#reinforcement-learning#natural-language-processing#computer-vision#agentic-coding

Комментарии (13)

  • Участники раскритиковали статью за очевидную машинную генерацию и «сливную» подборку источников.
  • Подчёркнули, что контент местами бессмысленный и не отражает реальную картину рынка.
  • Некоторые обсудили устойчивость рынка инструментов вроде Cursor и отметили, что спрос на «agentic coding» растёт независимо от судьбы отдельных продуктов.
  • Один из участников задал вопрос о переходе из веб-разработки в ML и оценке времени на подготовку.
  • В целом настроение: «ещё один AI-сгенерированный спам, но библиография пригодится».

LLMs aren't world models (yosefk.com) 🔥 Горячее 💬 Длинная дискуссия

LLMs не строят модель мира. Это не значит, что они бесполезны, а лишь то, что они не понимают, как устроена реальность, даже виртуальная.

Шахматы. Два года назад я сыграл с LLM: первые ходы она делала уверенно, но уже на 10-м ходе попыталась походить конём, которого не было на доске, и быстро проиграла. Повторил эксперимент сейчас — к 9-му ходу модель теряет позицию. Проанализировав триллион партий, LLM так и не выучила главное: чтобы ходить, нужно знать, где стоят фигуры. Это не требуется для предсказания текста партии.

Графика. Спросил, как работает «Normal blending» в Krita. Ответ: «цвет верхнего слоя просто отображается, возможно, с учётом прозрачности, без формул и вычислений».
Модель не понимает:

  • Цвета в компьютере — это числа.
  • Любое «влияние» прозрачности — это математическая операция.
  • Если видно нижний слой, значит, итоговый цвет зависит от обоих слоёв.

Можно заставить LLM процитировать формулу альфа-смешивания, но это лишь показывает, что она умеет подобрать слова, а не понимает смысл.

Люди тоже могут путаться, но при достаточной мотивации разберутся. У LLM мотивация была: 200 млрд долларов на оборудование.

by ingve • 10 августа 2025 г. в 11:40 • 325 points

ОригиналHN

#large-language-models#machine-learning#artificial-intelligence#neural-networks#transformers#natural-language-processing#llm

Комментарии (184)

  • @antirez и другие приводят контрпримеры: даже крошечные трансформеры выучивают внутренние 8×8 «карты» позиций шахмат, а SOTA-модели действительно играют корректные ходы.
  • @ordu, @skeledrew и @otabdeveloper4 спорят о «правильности» подхода: одни считают LLM «по-человечески» предиктивными, другие подчеркивают разницу в архитектуре и обучении.
  • @ameliaquining выделяет единственное конкретное предсказание поста — «LLM никогда не справятся с большими кодовыми базами автономно» — и даёт ему 80 % на разобьются за два года.
  • @libraryofbabel, @joe_the_user и @yosefk обсуждают интерпретабельность: наличие внутренних представлений не означает полноценной «модели мира», а измерения Elo и «автономность» нуждаются в точных определениях.
  • @DennisP, @GaggiX, @og_kalu приводят ссылки на Genie-3, свежие arXiv-работы и видео, показывающие, что LLM (и мультимодальные модели) уже умеют играть в шахматы и кодить.

Ask HN: How can ChatGPT serve 700M users when I can't run one GPT-4 locally? 🔥 Горячее 💬 Длинная дискуссия

by superasn • 08 августа 2025 г. в 19:27 • 476 points

ОригиналHN

#llm#gpt-4#openai#gpu#cloud-computing#machine-learning#neural-networks

Комментарии (306)

  • У OpenAI десятки миллиардов долларов на кластеры GPU (по $20–40 тыс. за карту) и инфраструктуру, чего нет у обычного пользователя.
  • Ключевая «фишка» — массовое батчирование запросов: одновременная обработка тысяч пользователей позволяет загружать видеопамять и вычислительные блоки почти на 100 %, тогда как дома GPU простаивает.
  • Используются Mixture-of-Experts, спекулятивное декодирование, конвейерная разбивка модели по GPU и прочие оптимизации, снижающие затраты на одного пользователя.
  • Большинство пользователей активны лишь доли процента времени, поэтому общая нагрузка оказывается меньше, чем кажется по 700 млн «weekly users».
  • Всё это — классический эффект экономии масштаба: высокие фиксированные затраты и почти нулевые переменные на одного юзера делают запуск GPT-4 локально невыгодным.