Hacker News Digest

Тег: #nats

Постов: 2

OpenTelemetry collector: What it is, when you need it, and when you don't (oneuptime.com)

OpenTelemetry Collector: что это, когда нужен и когда нет

Практическое руководство по OpenTelemetry Collector: что делает, как работает, архитектурные паттерны и как решить, нужен ли он вам для производительности, контроля, безопасности и экономии.

Нужен ли вам OpenTelemetry Collector? Для небольших проектов — возможно нет. Для production-среды с множеством сервисов, где важны стоимость, производительность и безопасность — почти наверняка да.

Краткое определение

OpenTelemetry Collector — это нейтральный к вендорам, расширяемый конвейер телеметрии, который принимает, обрабатывает и экспортирует данные (трейсы, метрики, логи) из ваших приложений в одно или несколько хранилищ.

Он позволяет:

  • Очищать данные (удалять чувствительные поля, добавлять контекст)
  • Пакетировать отправки и повторять при сбоях
  • Применять умное семплирование (сохранять ошибки и редкие медленные трейсы)
  • Сглаживать различия между версиями SDK
  • Маршрутизировать данные в разные хранилища
  • Служить защитным барьером между приложениями и интернетом
  • Снижать затраты, отсеивая малополезную телеметрию

Архитектура

Без Collector (прямой экспорт)

Каждый сервис отправляет телеметрию напрямую в бэкенд:

Плюсы:

  • Проще (меньше компонентов)
  • Меньше операционных затрат
  • Подходит для маленьких приложений / POC

Минусы:

  • Каждый сервис сам handles retries, auth, backpressure
  • Сложно менять экспортеры
  • Нет централизованного семплирования / очистки / маршрутизации
  • Риск misconfigurations
  • Выше стоимость исходящего трафика при отправке в несколько систем

С центральным Collector

Все приложения отправляют данные в центральный Collector, который затем экспортирует:

Плюсы:

  • Централизованная конфигурация: семплирование, очистка, обогащение
  • Один канал исходящего трафика с пакетированием и retry
  • Развязывает жизненный цикл приложения от изменений вендоров
  • Меньше нагрузки на приложения
  • Безопасность: приложения не выходят в интернет напрямую

by ndhandala • 18 сентября 2025 г. в 17:29 • 92 points

ОригиналHN

#opentelemetry#telemetry#kafka#nats#monitoring#logging#tracing#metrics

Комментарии (27)

  • Рекомендуется использовать коллектор OpenTelemetry для упрощения архитектуры, локальной отладки и управления аутентификацией
  • Предлагается декаплеить коллектор от потребителей трассировок через брокеры сообщений (Kafka/NATS) для надежности и масштабируемости
  • Коллектор рассматривается как защитный шлюз (read-only) между приложениями и базой данных для безопасности
  • Отмечается сложность освоения OpenTelemetry, но подчеркивается его ценность как стандарта для интероперабельности
  • Указывается полезность OTEL даже для монолитов благодаря возможностям корреляции и вложенных спэнов
  • Обсуждаются альтернативы (Vector vs OTEL) и необходимость улучшения документации и примеров
  • Упоминается использование коллектора для валидации и тестирования с помощью AI-агентов

Why was Apache Kafka created? (bigdata.2minutestreaming.com) 💬 Длинная дискуссия

Почему появился Apache Kafka
LinkedIn, 2012 г.

Проблема интеграции
LinkedIn нужно было передавать данные активности (лайки, просмотры, публикации) в десятки систем: антифрод, ML-модели, веб-функции, витрины, Hadoop. Эти потоки — критичная инфраструктура, а не просто аналитика.

Старые трубы

  • Пакетный конвейер: приложения писали XML на HTTP-сервер; раз в час файлы собирались, парсились и грузились в Oracle + Hadoop.
  • Realtime-конвейер: метрики и логи уходили в Zenoss, но туда нельзя было добавить новые данные без ручной работы, а данные были изолированы.

Общие боли

  • ручное сопровождение и добавление источников;
  • постоянные бэклоги;
  • point-to-point архитектура без обмена между системами.

Вывод
LinkedIn понял, что нужен один надёжный, масштабируемый и универсальный «шина событий», куда пишут все, а читают кто угодно. Так родился Kafka.

by enether • 22 августа 2025 г. в 19:31 • 181 points

ОригиналHN

#apache-kafka#linkedin#big-data#event-streaming#oracle#hadoop#redis#nats#rabbitmq#apache-pulsar

Комментарии (172)

  • LinkedIn отказался от Kafka и создал собственную систему Northguard из-за невозможности масштабировать 32 трлн записей/день, 17 ПБ/день и 400 тыс. топиков.
  • Участники спорят: Kafka мощна для «огненных шлангов» данных и многократного потребления, но требует экспертизы и ресурсов; для большинства задач достаточно Redis, NATS, RabbitMQ.
  • Названа главная фишка Kafka — возможность переигрывать сообщения и строить разные консьюмеры поверх одного лога.
  • Сравнивают NATS (Jetstream) и Apache Pulsar как более лёгкие альтернативы; Redpanda тоже упоминается.
  • Мнения разделились: кто-то считает Kafka переоценённой и «бюрократичной», кто-то — незаменимой для больших данных.