Hacker News Digest

Тег: #monitoring

Постов: 2

OpenTelemetry collector: What it is, when you need it, and when you don't (oneuptime.com)

OpenTelemetry Collector: что это, когда нужен и когда нет

Практическое руководство по OpenTelemetry Collector: что делает, как работает, архитектурные паттерны и как решить, нужен ли он вам для производительности, контроля, безопасности и экономии.

Нужен ли вам OpenTelemetry Collector? Для небольших проектов — возможно нет. Для production-среды с множеством сервисов, где важны стоимость, производительность и безопасность — почти наверняка да.

Краткое определение

OpenTelemetry Collector — это нейтральный к вендорам, расширяемый конвейер телеметрии, который принимает, обрабатывает и экспортирует данные (трейсы, метрики, логи) из ваших приложений в одно или несколько хранилищ.

Он позволяет:

  • Очищать данные (удалять чувствительные поля, добавлять контекст)
  • Пакетировать отправки и повторять при сбоях
  • Применять умное семплирование (сохранять ошибки и редкие медленные трейсы)
  • Сглаживать различия между версиями SDK
  • Маршрутизировать данные в разные хранилища
  • Служить защитным барьером между приложениями и интернетом
  • Снижать затраты, отсеивая малополезную телеметрию

Архитектура

Без Collector (прямой экспорт)

Каждый сервис отправляет телеметрию напрямую в бэкенд:

Плюсы:

  • Проще (меньше компонентов)
  • Меньше операционных затрат
  • Подходит для маленьких приложений / POC

Минусы:

  • Каждый сервис сам handles retries, auth, backpressure
  • Сложно менять экспортеры
  • Нет централизованного семплирования / очистки / маршрутизации
  • Риск misconfigurations
  • Выше стоимость исходящего трафика при отправке в несколько систем

С центральным Collector

Все приложения отправляют данные в центральный Collector, который затем экспортирует:

Плюсы:

  • Централизованная конфигурация: семплирование, очистка, обогащение
  • Один канал исходящего трафика с пакетированием и retry
  • Развязывает жизненный цикл приложения от изменений вендоров
  • Меньше нагрузки на приложения
  • Безопасность: приложения не выходят в интернет напрямую

by ndhandala • 18 сентября 2025 г. в 17:29 • 92 points

ОригиналHN

#opentelemetry#telemetry#kafka#nats#monitoring#logging#tracing#metrics

Комментарии (27)

  • Рекомендуется использовать коллектор OpenTelemetry для упрощения архитектуры, локальной отладки и управления аутентификацией
  • Предлагается декаплеить коллектор от потребителей трассировок через брокеры сообщений (Kafka/NATS) для надежности и масштабируемости
  • Коллектор рассматривается как защитный шлюз (read-only) между приложениями и базой данных для безопасности
  • Отмечается сложность освоения OpenTelemetry, но подчеркивается его ценность как стандарта для интероперабельности
  • Указывается полезность OTEL даже для монолитов благодаря возможностям корреляции и вложенных спэнов
  • Обсуждаются альтернативы (Vector vs OTEL) и необходимость улучшения документации и примеров
  • Упоминается использование коллектора для валидации и тестирования с помощью AI-агентов

Best Practices for Building Agentic AI Systems (userjot.com)

Двухуровневая модель

Основной агент ведёт диалог, помнит контекст, раздаёт задачи.
Под-агенты — чистые функции: получили вход, вернули результат, забыли всё.
Больше двух уровней — лишние точки отказа.

Под-агенты без состояния

Каждый вызов — как вызов функции:

  • одинаковый вход → одинаковый выход
  • легко кешировать, тестировать, запускать параллельно
    Пример сообщения:
{"task": "sentiment", "data": [...], "constraints": {"timeout": 5}}

Разбиение задач

  • Вертикальное: последовательные шаги (сбор → извлечение → сравнение).
  • Горизонтальное: параллельные ветки (исследовать 5 конкурентов одновременно).
    Смешиваем: сначала параллельная категоризация фидбека, потом последовательная приоритизация.

Протокол общения

Каждая команда содержит:

  • цель, входные данные, ограничения, формат вывода.
    Ответ: status, result, confidence, processing_time.
    Болтовни и «помни, что мы обсуждали» — нет.

Специализация агентов

  • Research — поиск по базе фидбека.
  • Analysis — извлечение тем и настроений.
  • Summary — генерация отчётов и changelog.
    Один агент = одна чёткая функция.

Оркестрация

  • Round-robin — когда порядок важен.
  • Priority queue — сначала критичные фидбеки.
  • Fan-out/fan-in — параллельные под-агенты, потом сбор результатов.
    Состояние хранит только основной агент; под-агенты не знают о существовании друг друга.

Управление контекстом

  • Сжатие: оставляем только релевантные куски.
  • Слайды: отправляем под-агенту только нужную подборку.
  • Версионирование: каждый результат имеет id, чтобы легко откатиться.

Обработка ошибок

  • Повторы с экспоненциальной задержкой (до 3 раз).
  • Fallback-агенты: если «анализатор» упал, включаем «резервный».
  • Circuit breaker: после N ошибок отключаем агента и пишем алерт.

Производительность

  • Кешируем по хешу запроса.
  • Параллельные вызовы без блокировок.
  • Пакетная обработка: отправляем 50 фидбеков за раз, а не по одному.

Мониторинг

Отслеживаем:

  • latency под-агентов,
  • точность (сравниваем с разметкой),
  • частота ошибок,
  • объём контекста (токенов).
    Всё пишем в Prometheus + Grafana.

Уроки из продакшена

  • Начинайте с 2–3 под-агентов, добавляйте постепенно.
  • Пишите юнит-тесты для каждого под-агента.
  • Не давайте агентам доступ к внешним API без rate-limit.
  • Держите промпты в git; версионируйте как код.

Принципы

  1. Простота > масштаб.
  2. Чистые функции > разделяемое состояние.
  3. Структурированные сообщения > свободный текст.
  4. Мониторинг с первого дня > дебаг в проде.

Частые ошибки

  • «Умные» под-агенты с памятью → гонки и непредсказуемость.
  • Слишком большой контекст → таймауты и лишние токены.
  • Отсутствие таймаутов → зависшие цепочки.
  • Игнорирование кеширования → лишние $$$ на API.

Как начать

  1. Определите 1–2 ключевые задачи (например, «суммаризировать фидбек»).
  2. Создайте под-агентов: research, summarize.
  3. Напишите структурированные схемы входа/выхода.
  4. Покройте тестами, добавьте метрики.
  5. Подключите к реальному потоку данных и наблюдайте.

by vinhnx • 16 августа 2025 г. в 02:39 • 135 points

ОригиналHN

#llm#agents#cloud#aws#lambda#prometheus#grafana#monitoring#microservices#workflow

Комментарии (62)

  • Автор делится опытом построения практичных «агентов» как чистых функций без состояния и истории разговоров, что экономит токены и упрощает отладку.
  • Поддержка: дешёвые/локальные модели на 75 % задач, жёсткое разбиение на под-агентов, явное описание шагов вместо «умных» решений.
  • Критика: часть читателей считает описанное не настоящим агентством, а обычным workflow с LLM-вызовами; стиль текста вызывает раздражение как «AI-generated».
  • Практические инструменты: Claude Code (файлы .claude/agents), AWS Lambda + Step Functions, Spring AI, кеширование промптов.
  • Сообщество обсуждает, где грань между «агентом» и «инструментом», просит примеров и данных, а также делится ссылкой на оригинальный пост Anthropic.