A bug that taught me more about PyTorch than years of using it 🔥 Горячее
Плато обучения в модели PyTorch оказалось не ошибкой гиперпараметров, а багом в бэкенде фреймворка. Автор провёл детективное расследование, которое научило его больше о PyTorch, чем годы использования. Проблема заключалась в ядре MPS для Apple Silicon, где операции addcmul_ и addcdiv_ при работе с ненепрерывными тензорами молча записывали результаты во временный буфер вместо самого тензора.
Из-за инициализации весов энкодера как транспонированных декодера они получали ненепрерывную память, которая наследовалась состояниями оптимизатора Adam. Это приводило к тому, что exp_avg_sq.addcmul_() не обновлялся, оставаясь нулевым, что полностью останавливало обновление параметров. Исправить проблему можно, сделав веса непрерывными при инициализации, обновив PyTorch до версии ≥2.4 или перейдя на macOS 15+.
Комментарии (78)
- Найдена ошибка в градиентах для Apple MPS в PyTorch, вызванная неправильной обработкой не-непрерывных тензоров.
- Сообщество обсуждает, что подобные ошибки встречаются и в других библиотеках и бэкендах, и что их трудно отследить.
- Участники обсуждают, что Apple не поддерживает PyTorch и вместо этого развивает собственный фреймворк MLX, что ведет к фрагментации экосистемы.
- Обсуждается, что отсутствие должной поддержки PyTorch на macOS приводит к тому, что исследователи сталкиваются с такими ошибками, которые могут быть неочевидны и влиять на результаты экспериментов.
Apertus 70B: Truly Open - Swiss LLM by ETH, EPFL and CSCS 🔥 Горячее
Apertus-70B-2509
Модель от швейцарского консорциума ETH Zurich и EPFL: 70 и 8 млрд параметров, полностью открытая (веса, данные, рецепты). Поддержка 1811 языков, 15 трлн токенов, xIELU-активация, AdEMAMix, QRPO-выравнивание. Работает в transformers ≥4.56 и vLLM. Требует согласия на политику конфиденциальности и фильтрацию персональных данных.
Комментарии (49)
- Apertus — 8B и 70B «полностью открытые» мультиязычные модели (1811 языков, 15T токенов, полные веса, данные и рецепты).
- Подчёркивают правовую чистоту: учёт robots.txt ретроспективно, opt-out, фильтр персональных данных, 81 контрольная точка для аудита.
- На бенчмарках ≈ Llama-3.1 по общим знаниям, но уступают в коде/рассуждениях; модели уже в MLX, GGUF скоро.
- Критика: gated-доступ на HF (нужен договор и контакты), размеры «2-3 поколения назад», нет GGUF/OpenRouter, ускоренный релиз без ярких метрик.
- Пользователи спрашивают стоимость обучения, запреты копирайта, весы швейцарских языков и прозрачность фильтров — команда обещает доклады и кастомизацию.
What's the strongest AI model you can train on a laptop in five minutes? 🔥 Горячее 💬 Длинная дискуссия
Сильнейшая модель за 5 минут на ноутбуке
Победитель: 1.8-млн-параметровный GPT-подобный трансформер, обученный на ~20 млн токенов TinyStories и показавший 9.6 перплексии. Пример:
Once upon a time, there was a little boy named Tim…
Ограничение времени
5 минут — это ~300 млн токен-шагов. Большие модели не успевают, мелкие (10 k) быстро выходят на плато. Оптимум — 1-2 млн параметров.
Скорость
На M1 Pro (MPS) достигал 3000 ток/с.
torch.compile,float16, MLX — без выгоды.- Градиентное накопление тормозит.
- Главное: минимальный размер модели и MPS.
Датасет
Simple Wikipedia давала факты без смысла («Paris, France is a city in North Carolina»).
TinyStories (рассказы уровня 4-летнего) — простые паттерны, мало имён, быстрая сходимость.
Комментарии (181)
- Обсуждение вращается вокруг тренировки маленьких языковых моделей на ноутбуке: почему это важно для науки и практики.
- Участники сравнивают ограничения по времени, энергии (джоулям) и железу; предлагают «AI-олимпиаду» за лучший результат на данный бюджет.
- Приводятся конкретные приёмы: Muon-оптимизатор, улучшенная инициализация, «cramming» за день на лэптопе, идея специализированных моделей «под задачу».
- Задаются вопросы о данных, переобучении, диффузных архитектурах и о том, когда марковская цепь окажется достаточной.
- В целом тон оптимистичен: даже на обычном ноутбуке можно быстро экспериментировать и учиться, не дожидаясь супер-кластеров.