Комментарии (42)
- HNSW критикуется за сложность балансировки, неэффективность кэширования и слабую поддержку фильтрации результатов поиска.
- Продвинутое квантование (особенно product quantization) значительно эффективнее простого (int8/binary) и является ключом к ускорению индексов; DiskANN часто предпочтительнее HNSW в продакшене.
- Иерархичность HNSW может быть избыточной; плоские структуры или модифицированные функции выбора уровней могут дать сопоставимую производительность.
- Важна прозрачность систем: предоставление программистам доступа к структуре данных и понимание компромиссов позволяет создавать более гибкие решения.
- В Redis векторы нормализуются для быстрого вычисления скалярного произведения вместо косинусного сходства; запись на диск выполняется точечно (RDB/AOF), а не непрерывно.
Комментарии (47)
- Обсуждение лицензирования: проект использует Elastic License 2.0, что вызывает споры о его статусе как открытого или исходного кода, несмотря на бесплатное использование в open-source проектах.
- Технические аспекты поиска: обсуждается эффективность brute-force подхода с оптимизацией через SIMD, сравнение с индексированными методами (например, HNSW) и вопросы производительности при больших объемах данных.
- Использование товарных знаков: критикуется использование домена sqlite.ai и бренда SQLite без явной связи с авторами SQLite, что может вводить в заблуждение.
- Практические применения: векторные базы данных полезны для поиска схожих элементов (например, через эмбеддинги) в машинном обучении, обработке текстов и изображений.
- Альтернативы и сравнения: упоминаются другие решения, такие как sqlite-vec (с открытой лицензией) и Turso, а также обсуждаются их преимущества и недостатки.
Vector database that can index 1B vectors in 48M
Зачем и как мы сделали Vectroid
Почти все векторные БД заставляют выбирать: скорость, точность или цена. Мы решили, что жертвы не нужны, и собрали serverless-решение, где всё хорошо одновременно.
Ключевая идея:
- нагрузка скачет ⇒ ресурсы выделяем динамически;
- алгоритм HNSW жрёт память, но его можно «сплющить» квантованием и развернуть обратно при необходимости.
Что умеет Vectroid
- Поиск по HNSW: 90 % recall при 10 QPS и P99 = 34 мс (MS Marco, 138 M векторов).
- Индексация 1 M векторов в минуту, 1 B — за 48 мин.
- Записи становятся видны почти сразу после вставки.
- Масштаб до миллиардов векторов в одном пространстве.
- Пишущая и читающая части масштабируются отдельно, данные живут в GCS/S3, индексы подгружаются лениво и выгружаются при простое.
Архитектура
Два независимых микросервиса: ingest и query. Все слои (вставка, индекс, поиск) масштабируются отдельно, память экономится квантованием и покадровой выгрузкой.
Попробовать бесплатно — 100 ГБ индексов навсегда.
Комментарии (41)
- Предложена идея «векторного движка» как лёгкой встраиваемой библиотеки для быстрого построения и поиска эмбеддингов, без переизобретения велосипеда в каждом продукте.
- Участники спорят о масштабируемости: 1 млрд 4096-мерных векторов теоретически невозможно держать в одной VRAM-карте (4 Т скаляров), но можно разбить на кластеры или сжать квантованием.
- Ключевой вызов — не алгоритм (HNSW/IVF), а распределённая архитектура: отдельное масштабирование записи и чтения, баланс цена-точность-латентность.
- Уже есть похожие open-source решения (USearch в ClickHouse, TurboPuffer), но новые SaaS-продукты (Vectroid и др.) обещают серверлесс, объектное хранилище и «редисо-подобный» кэш.
- Часть аудитории критикует закрытость кода и риск вендор-локина; стартапы отвечают, что opensource пока замедляет релизы, а вектора легко экспортировать.
Will Amazon S3 Vectors kill vector databases or save them? 🔥 Горячее
Amazon S3 Vectors: убийца или спаситель векторных БД?
AWS запустил S3 Vectors — хранилище эмбеддингов прямо в S3. Цена низкая, интеграция в экосистему AWS очевидна. Кто-то уже похоронил специализированные векторные СУБД вроде Milvus, Pinecone, Qdrant. На деле — не так.
Почему это не конец векторных БД
- Стоимость поиска может быть выше, чем вызов LLM. У одного AI-стартапа расходы на векторный поиск в 2× превышают счёт за OpenAI.
- RAG вырос до миллиардов векторов за ночь. С3 не масштабируется до таких размеров без потери скорости и точности.
- Latency-требования изменились, но не исчезли. Пока LLM генерирует ответ, можно подождать 100 мс, но не 5 с.
Что умеет S3 Vectors
- Простой knn через REST / SQL-подобный язык.
- Хранит векторы рядом с объектами, без отдельного кластера.
- Цена: ≈ 0,32 $/млн запросов + стандартные тарифы S3.
Чего нет
- GPU-ускорения, HNSW, PQ, динамического индексирования.
- Фильтрация по метаданным на лету.
- Горизонтального масштабирования под высокую QPS.
- SLA на latency и точность.
Где пригодится
- Холодный архив, редкие запросы, прототипы.
- Совместная работа с полноценной векторной БД: S3 держит дешёвую «копию всего», а hot-слой (Milvus/Pinecone) — быстрый доступ к топ-N.
Итог
S3 Vectors — ещё один кирпичик в стеке, а не замена. Специализированные СУБД остаются единственным способом получить миллиардные индексы, фильтры и суб-100 мс latency без компромиссов.
Комментарии (113)
- S3 Vectors — это дёшево и сердито: холодное хранилище, top-k ≤ 30, фильтры после поиска, нет гибридного поиска и нормальной документации.
- Подходит лишь для низких QPS и «холодных» данных; для рекомендаций, высокого top-k или сложных фильтров придётся шардировать или выбирать другой продукт.
- Цена растёт ступенчато: одна «квантовая» добавка в фильтре может удвоить счёт; у некоторых компаний поиск стоит дороже, чем вызовы OpenAI.
- Альтернативы: Turbopuffer, LanceDB, Cloudflare Vectorize, pgvector в Postgres — каждый даёт больше контроля, функций и/или дешевле при миллионах векторов.
- AWS не раскрывает внутренности, поэтому сообщество тратит дни на реверс-инжиниринг; при превью-ограничениях производительность может вырасти, но гарантий нет.