Teardown of Apple 40W dynamic power adapter with 60W max 💬 Длинная дискуссия
Apple представила компактный 40-ваттный адаптер с динамическим распределением мощности до 60 Вт для iPhone 17 и новой линейки iPhone Air. Устройство размером с обычный 20-ваттный блок заряжает смартфон до 50% за 20 минут благодаря усовершенствованной архитектуре.
Внутренний анализ показывает высокую плотность компонентов и эффективное тепловое управление. Складные штыри и малый вес делают его удобным для путешествий, а цена в $39 сохраняет премиальный статус продукта.
Комментарии (192)
- Пользователи обсуждают детали теардауна зарядного устройства Apple, сравнивая его с конкурентами (Anker, UGreen) и отмечая компактность и использование GaN-технологий.
- Поднимаются вопросы о нагреве мощных зарядников при нагрузке, желании иметь многопортовые версии и проблемы с совместимостью (например, с ноутбуками HP).
- Высказываются критические замечания: приклеенные корпуса (увеличивают электронные отходы), проприетарные стандарты Apple (AVS вместо PPS), недоступность в разных регионах.
- Упоминаются альтернативные продукты (SlimQ, IKEA SJÖSS, встроенные розетки с PD) и даются практические советы по выбору зарядников.
- Некоторые пользователи делятся опытом использования рентгена и КТ для анализа электроники, а также критикуют сайт за недоступность зума на мобильных.
The Math Behind GANs (2020)
GAN: математика в двух словах
- Модели: генератор
G(z)и дискриминаторD(x)играют в минимакс-игру. - Обозначения:
x– реальные данные,z– скрытый вектор,D(x)– вероятность «реальности». - Функции ошибок
- Дискриминатор:
L_D = –[log D(x) + log(1 – D(G(z)))](минимизирует). - Генератор:
L_G = –log D(G(z))(хочетD(G(z)) ≈ 1).
- Дискриминатор:
- Оптимизация
- Фиксируем
G, обучаемD, максимизируяlog D(x) + log(1 – D(G(z))). - Фиксируем
D, обучаемG, минимизируяlog(1 – D(G(z)))(или максимизируяlog D(G(z))– стабильнее).
- Фиксируем
- Итог: игра
min_G max_D [log D(x) + log(1 – D(G(z)))]сводится к минимизации расстояния JS между реальным и сгенерированным распределениями.
Комментарии (26)
- Для многоклассовых задач GAN лучше подавать классы как side-information, а не встраивать в основную цель.
- GAN «древние», но всё ещё живы: обучают VAE/VQ-VAE для латентных пространств diffusion-моделей и добавляют adversarial-loss в декодеры.
- Сами архитектуры меняются, а adversarial-training как метод остаётся релевантным, хотя diffusion сейчас предпочтительнее из-за стабильности.
- Главная проблема GAN — нестабильность и mode collapse, поэтому их чаще используют как небольшую регуляризацию, а не для полной генерации.
- Знание GAN всё ещё полезно для вдохновения и понимания истории нейросетей, даже если вы не собираетесь их тренировать с нуля.
Hand-picked selection of articles on AI fundamentals/concepts
- Основы ИИ: статьи о полном цикле — от построения нейросетей до оценки результатов.
- Алгоритмы/архитектуры: линейная и логистическая регрессия, k-ближайших соседей, кластеризация, SVM, наивный Байес, деревья решений, ансамбли, GAN, диффузия, GNN, внимание, CNN, RL, MoE, SSM, агенты, FlashAttention, ускорение моделей, спекулятивное декодирование, кросс-валидация.
- Данные/обучение: сэмплирование, дисбаланс, нормализация, парадигмы обучения, инициализация Xavier, регуляризация, градиентный спуск, функции активации и потерь, дообучение, разбиение данных, batchnorm, dropout, двойной спуск, LoRA, распределённое обучение.
- Речь: обработка речи.
- Зрение: ViT, рецептивное поле, ResNet, генерация изображений GPT-4o.
- NLP: эмбеддинги, задачи NLP, токенизация, трансформеры, LLM, RAG, RLHF, перевод, графы знаний, обнаружение галлюцинаций, NER, RAG, LLMOps, бенчмарки.
- Мультимодальность: VLM, архитектуры VLM, управление компьютером.
- Модели: BERT, GPT, CLIP, Meena, ChatGPT, GPT-4, LLaMA, Alpaca, Gemini, Toolformer, Visual ChatGPT, TaskMatrix, BigBird, o1, DeepSeek, Gemma 3n.
- Оценка: метрики, F-beta, A/B-тесты.
- MLOps: дрейф данных, инструменты и тесты MLOps.
- On-device ИИ: компрессия, PII, федеративное обучение, дифференциальная приватность, трансформеры на устройстве.
- Управление проектами: OKR, RICE, диаграммы Ганта, управление проектами.
- Разное: «Топ-30 Ильи Сацкевера».
Комментарии (13)
- Участники раскритиковали статью за очевидную машинную генерацию и «сливную» подборку источников.
- Подчёркнули, что контент местами бессмысленный и не отражает реальную картину рынка.
- Некоторые обсудили устойчивость рынка инструментов вроде Cursor и отметили, что спрос на «agentic coding» растёт независимо от судьбы отдельных продуктов.
- Один из участников задал вопрос о переходе из веб-разработки в ML и оценке времени на подготовку.
- В целом настроение: «ещё один AI-сгенерированный спам, но библиография пригодится».