Who Invented Backpropagation?
Кто изобрел обратное распространение ошибки (backpropagation)
Современный backpropagation (BP) впервые опубликовал в 1970 г. финский магистрант Сеппо Линнайнмаа [BP1][R7]; 2020 г. отмечали 50-летие метода. Предшественник — работа Келли 1960 г. [BPA].
BP — это обратный режим автоматического дифференцирования: стоимость вычисления градиента примерно равна стоимости прямого прохода. Линнайнмаа дал алгоритм для произвольных разреженных сетей и привёл код на FORTRAN; все современные фреймворки (TensorFlow и др.) опираются на его метод.
В 1960-е уже применяли цепное правило Лейбница для градиентного спуска в многослойных системах (Келли, Брайсон, Дрейфус и др.), но без учёта эффективности для разреженных сетей.
Первое применение BP к обучению весов нейросетей — Дрейфус 1973 г.; первое NN-специфическое описание — Вербос 1982 г. [BP2] (в диссертации 1974 г. его ещё нет).
Уже в 1967 г. Амари с учеником Сайто обучал пятислойный перцептрон SGD, получая внутренние представления; это было глубокое обучение задолго до 1980-х. Параллельно Ивахненко строил глубокие сети GMDH (с 1965 г.).
К 1985 г. вычисления подешевели в 1000 раз; Румелхарт и др. показали, что BP формирует полезные скрытые представления.
Комментарии (58)
- Суть спора: кто «изобрёл» backpropagation и заслужил ли Хинтон Нобелевку.
- Мнения разделились: кто-то считает, что это просто применение цепного правила, кто-то — что идея переоткрывалась много раз.
- Упоминаются ранние работы в теории управления (Келли, 1960-е) и автоматическом дифференцировании.
- Некоторые участники видят в статье Смидхубера «кислый виноград» и попытку переиначить историю.
- Общий вывод: хорошие идеи часто переоткрываются, а заслуга распределяется между многими.