Hacker News Digest

Тег: #fastapi

Постов: 2

Mistral Integration Improved in Llama.cpp (github.com)

  • Добавлена поддержка моделей Mistral-Small-3.1-24B-Instruct-2503 и Mistral-Small-24B-Instruct-2501
  • Улучшена работа с Mamba-2 и Sliding Window Attention
  • Новые правила конвертации: convert-hf-to-gguf.py теперь корректно обрабатывает sliding_window, mamba2, attention_bias, tie_word_embeddings
  • Обновлён llama_model_loader и llama_model: добавлены поля mamba2 и sliding_window, упрощена логика KV-cache
  • Поддержка mamba2 в llama_context и llama_decode
  • Удалены устаревшие llama_model и llama_vocab
  • Добавлены тесты test-mistral.py и test-mistral-vision.py

by decide1000 • 11 августа 2025 г. в 10:10 • 79 points

ОригиналHN

#mistral#llama.cpp#mamba-2#sliding-window-attention#python#fastapi#c++#github#cpp

Комментарии (11)

  • Mistral предлагает mistral-common как официальный токенизатор, но пока только через Python-библиотеку и временный REST-обвязанный FastAPI.
  • Сообщество жалуется: «cpp-бинарь, зависящий от Python-сервера — временное и грустное решение», ждут нативный C++ порт.
  • Пользователи расстроены, что Mistral, выпуская веса, не сразу поддерживает llama.cpp, на котором держится большинство «домашних» запусков.
  • Некоторые замечают, что llama.cpp и так тянет Python для шаблонов, но это не отменяет желания увидеть полноценную C++ реализацию.
  • Сторонники Mistral отвечают: компания маленькая, пока не ясно, какие именно инференс-фреймворки поддерживать, зато открыли собственный mistral-inference.

Litestar is worth a look (b-list.org) 🔥 Горячее

  • Несколько лет назад мне выпал шанс выбрать async‑first, типизированный Python‑фреймворк для веба. Я взял Litestar — без хайпа и ракет в твитах — и не пожалел: уже около 18 месяцев все мои новые рабочие проекты на нём.

  • Даже если вы пишете асинхронные веб‑приложения на Python, вы могли пройти мимо Litestar. Хочу это исправить.

  • Вкус демо: простой файл

    from litestar import Litestar, get
    
    @get("/greet")
    async def greet(name: str) -> str:
        return f"Hi, {name}!"
    
    app = Litestar([greet])
    

    Запускаете через litestar run или любой ASGI‑сервер. /greet?name=Bob вернёт «Hi, Bob!». Без name — HTTP 400: параметр обязателен. Да, похоже на FastAPI и на знакомые по Spring/ASP.NET MVC подходы с аннотациями — и FastAPI тоже так умеет. Но у Litestar есть свои сильные стороны.

  • Про название: раньше проект назывался Starlite, потому что изначально строился на Starlette (как и FastAPI). Позже зависимость убрали, а чтобы не путать со Starlette, в релизе 2.0 (2023) переименовали в Litestar.

  • Масштабирование кода, а не трафика:

    • Django плохо «масштабируется вниз»: «правильный» старт быстро разрастается в десяток файлов и папок. Однофайловые трюки работают, но против шерсти.
    • Микрофреймворки — наоборот: стартуют в одном файле, но по мере роста кода расползаются и начинают мешать.
    • В FastAPI маршруты обычно вешаются декораторами на объект приложения. Это удобно в одном файле, но при разбиении на модули ведёт к циклическим импортам. Решение — «вторичные» реестры маршрутов (APIRouter, blueprint): нужны, потому что декораторы привязаны к app. Litestar же позволяет описывать обработчики отдельно и передавать их приложению списком, что естественно масштабируется от одного файла к структуре проекта без костылей.

by todsacerdoti • 06 августа 2025 г. в 19:43 • 322 points

ОригиналHN

#litestar#python#fastapi#starlette#django#asgi#async-programming#web-frameworks#msgspec#htmx

Комментарии (81)

  • Обсуждение сравнивает FastAPI, Litestar, Starlette и Django для построения бекендов: многие отмечают, что FastAPI удобен для простых сервисов, но усложняется в больших кодовых базах, тогда как Litestar воспринимается более продуманным и быстрым для сложных API.
  • Несколько участников хвалят Litestar: высокая скорость, асинхронность, first-class msgspec, контроллеры для вложенных роутов, кеширование, плагины (в т.ч. для HTMX), и развивающийся Advanced Alchemy; отмечают, что у него больше одного мейнтейнера.
  • Часть разработчиков предпочитает Starlette как легковесную основу без «всей кухни», а Django ценят за ORM; обсуждают плюсы/минусы SQLAlchemy и альтернативы (peewee), а также идею разделять модели API и БД с самого начала.
  • Критика FastAPI касается структуры кода, управления зависимостями и разрыва между туториалами и реальными практиками; при этом приводят ссылки на репозитории-референсы, где показано, как масштабировать FastAPI.
  • Запросы и сомнения: как обрабатывать ошибки при стриминге, как деплоить (NGINX Unit упоминался как «капризный»), и нужен ли референс-проект Litestar; приводят litestar-fullstack как пример.
  • В целом тон дискуссии: многие либо мигрируют с FastAPI на Litestar, либо довольны Starlette; документацию нового поколения фреймворков часто критикуют за недостаток строгого API-референса и переизбыток туториалов.