Hacker News Digest

Тег: #directml

Постов: 2

A beginner's guide to deploying LLMs with AMD on Windows using PyTorch (gpuopen.com)

AMD и GPUOpen опубликовали практическое руководство, как запустить LLM на Windows с GPU AMD и PyTorch. Самое важное — это не требует ROCm, а использует DirectML, что делает процесс доступным для большинства геймерских видеокарт Radeon. Поддерживаются модели Llama 3.2, Mistral и Gemma, а также Q4 и FP16 квантизация. Подготовка включает установку ROCm и PyTorch, но ROCm не используется; вместо этого используется DirectML. Процесс включает скачивание модели, конвертацию в GGUF с помощью llama.cpp, и запуск через веб-интерфейс Gradio. Важно, что весь процесс происходит на Windows без виртуализации или WSL2.

by beckford • 06 октября 2025 г. в 13:15 • 92 points

ОригиналHN

#pytorch#amd#directml#llama#mistral#gemma#llm#quantization#gradio#windows

Комментарии (26)

I have a philosophy for which I have mixed feelings because I like it in principle despite it making me worse off in some other ways: Devs should punish companies that clearly don't give a shit about them. When I see AMD, I think of a firm that heavily prioritized their B2B busin

Windows ML is generally available (blogs.windows.com)

Windows ML теперь общедоступна, позволяя разработчикам внедрять локальный ИИ на устройствах с Windows. Это решение поддерживает аппаратное ускорение через DirectML, обеспечивая высокую производительность на CPU, GPU и NPU. Разработчики могут использовать предварительно обученные модели или создавать собственные, интегрируя их в приложения без облачной зависимости.

Ключевые преимущества включают снижение задержек, повышение конфиденциальности данных и работу в офлайн-режиме. Windows ML совместима с популярными фреймворками, такими как ONNX, и упрощает развёртывание на миллиардах устройств. Это открывает новые возможности для сценариев вроде обработки изображений, распознавания речи и генеративного ИИ прямо на устройстве пользователя.

by sorenjan • 25 сентября 2025 г. в 20:11 • 97 points

ОригиналHN

#windows-ml#directml#onnx#llm#machine-learning#amd#rocm#migraphx#vitis#ollama

Комментарии (28)

  • Критика подхода Ollama к веб-поиску и его влияния на open-source, в сравнении с глубокой интеграцией Windows ML в экосистему Microsoft.
  • Обсуждение технических проблем с бэкендами AMD (ROCm, MIGraphX, Vitis) и надежд на улучшение поддержки оборудования в Windows ML.
  • Вопросы о приватности данных при использовании Windows ML и сравнение с локальным запуском моделей через Ollama.
  • Сравнение Windows ML с решением Apple для доступа к локальным моделям и обсуждение его как абстракции для аппаратного обеспечения (аналог DirectX для ML).
  • Обсуждение поддержки ONNX как стандарта и проблем с совместимостью пользовательских слоев моделей (например, flash attention) в Windows ML.