Hacker News Digest

Тег: #dgx-spark

Постов: 2

Nvidia DGX Spark: great hardware, early days for the ecosystem (simonwillison.net)

NVIDIA представила DGX Spark - настольный "суперкомпьютер" для ИИ размером с Mac mini, стоимостью около $4,000. Внутри скрывается ARM64-система с 20-ядерным процессором, 128 ГБ ОЗУ и 3.7 ТБ SSD, а также мощный GPU NVIDIA GB10 на архитектуре Blackwell с 119.68 ГБ памяти. Устройство нацелено на исследователей ИИ, предназначено как для обучения, так и для запуска моделей.

Основная проблема - совместимость CUDA с ARM64. Большинство библиотек и туториалов предполагают x86-архитектуру, что создает множество сложностей при настройке. Автору удалось найти PyTorch 2.7 для CUDA на ARM, но не для версии 2.8. NVIDIA пытается упростить задачу через официальные Docker-контейнеры, а за последний недобю опубликовала обширную документацию, которой не хватало изначально.

by GavinAnderegg • 15 октября 2025 г. в 00:49 • 146 points

ОригиналHN

#nvidia#dgx-spark#cuda#arm64#pytorch#docker#gpu#llm#machine-learning#blackwell

Комментарии (85)

  • Обсуждение в основном вращается вокруг сравнения DGX Spark с другими решениями: пользователи отмечают, что при цене в $70 000 он уступает RTX 5090 в производительности и даже RTX 4090, а единственное преимущество — 128 ГБ видеопамяти — ограничено пропускной способностью, что делает его неэффективным для инференса больших моделей.
  • Участники также поднимают вопросы о цене, отсутствии DisplayPort и возможности подключения к обычному монитору, а также о том, что DGX Spark не может использоваться для обучения из-за ограниченной памяти и отсутствия NVLink.
  • Некоторые комментаторы сравнивают его с MacBook Pro на Apple Silicon, отмечая, что ноутбук дешевле и при этом предлагающий 128 ГБ единой памяти может быть более практичен для инференса.
  • Также обсуждается, что NVIDIA в целом не предоставляет нужного ПО для ARM64, что делает его менее привлекательным, и что в целом экосистема CUDA вокруг ARM64 остается сырой.

Nvidia DGX Spark (nvidia.com) 💬 Длинная дискуссия

  • DGX Spark — компактный «суперкомпьютер» на базе процессора Grace Blackwell, помещающийся на столе.
  • Поддерживает обучение и инференс ИИ-моделей любого размера благодаря архитектуре Grace Blackwell и 128 ГБ унифицированной памяти.
  • Подключается к DGX Cloud для масштабирования задач и работает в экосистеме NVIDIA AI Enterprise.
  • Поставляется с полным стеком ПО: CUDA, cuDNN, TensorRT, NeMo, RAPIDS и другими фреймворками.
  • Подходит исследователям, стартапам и инженерам, которым нужна локальная мощность без серверной.

by janandonly • 24 августа 2025 г. в 22:35 • 170 points

ОригиналHN

#nvidia#dgx-spark#grace-blackwell#cuda#cudnn#tensorrt#nemo#rapids#ubuntu#linux

Комментарии (176)

  • Jetson Thor и DGX Spark работают на зафиксированном ядре Linux от NVIDIA на Ubuntu 20.04, обновления ограничены, как на китайских SBC.
  • Spark: 1000 FP4-TOPS, 128 ГБ LPDDR5x, 273 ГБ/с пропускная способность, цена $3999; по $/производительность проигрывает 5090 и Thor.
  • Узкое место — низкая пропускная способность памяти: в 4 раза меньше RTX 4090 и в 8 раз меньше M4 Max, что ограничивает обучение и крупные LLM.
  • Устройство позиционируется как devkit для прототипирования и дообучения, а не как универсальный ПК; потребление и дата выхода не раскрыты.
  • Многие считают цену завышенной и ждут сравнения с будущими Mac Studio M4/M5 Ultra и AMD Strix Halo.