Комментарии (78)
- Участники не могут предсказать, как будет выглядеть индустрия через три года: все модели развиваются слишком быстро.
- Одни считают Cursor просто «обёрткой» над Claude, другие подчеркивают его уникальные фичи (визуальный интерфейс, история, автодополнение).
- Статистика показывает, что Claude Code обгоняет Cursor по популярности, но Cursor всё ещё опережает в автодополнении кода.
- Многие сомневаются в устойчивой прибыли Cursor из-за «всё-включено» модели и высоких токен-расходов.
- Обсуждается, что «обёртка» может стать «настоящей компанией», если создаст собственные технологии и моаты.
The current state of LLM-driven development 💬 Длинная дискуссия
LLM-разработка: краткий итог
- Мифы: LLM не делают код продакшн-готовым, требуют понимания задачи и хорошо структурированных кодовых баз. Использование LLM снижает навыки чтения документации и глубокого мышления.
- Агенты — это просто цикл «LLM → вызов локального API → ответ → LLM снова». Инструменты: навигация, редактирование, shell, поиск, MCP-серверы.
- Проблемы продуктов
- Нестабильность: модели и цены меняются еженедельно.
- Нет детерминизма, приходится постоянно обновлять промпты и MCP.
- Тесты
- Python, TypeScript, Rust, Flutter, сложные рефакторинги — справляются.
- Не справились: Token Field во Flutter (редкий компонент, сложное управление состоянием). Claude Opus 4.1 и GPT-5 провалили задачу.
Продукты
-
GitHub Copilot
- Плюсы: быстрое автодополнение, стабильность, низкая цена.
- Минусы: слабые «агенты», нет контекста всего проекта.
-
Claude Code Pro
- Плюсы: лучший «умный» режим, хорошо работает в больших кодовых базах.
- Минусы: дорого, медленно, иногда «теряется».
-
Gemini CLI / Jules
- Плюсы: бесплатный CLI, быстрый.
- Минусы: слабые модели, ограниченные возможности.
-
Kiro, Cursor, Windsurf
- Плюсы: встроенные редакторы, удобные интерфейсы.
- Минусы: дороже, часто баги, привязка к конкретному редактору.
Когда LLM полезны
- Лучшие языки: Python, TypeScript/JavaScript, Go.
- Лучшие задачи:
- Репетитивный код, тесты, миграции.
- Документация, примеры, объяснение legacy.
- Плохо:
- Редкие фреймворки, сложные UI, архитектурные решения.
- Надёжность и безопасность.
Вывод
LLM — полезный инструмент для рутины и прототипов, но не заменяет мышление и глубокое понимание.
Комментарии (179)
- Многие спорят с тезисом «использовать LLM в коде тривиально»: на практике нужны месяцы, чтобы понять, что делегировать, как формировать промпты и управлять контекстом.
- Кто-то сравнивает LLM с «однорукими бандитами»: результат часто случаен, а «навыки» сводятся к удаче и базовому гуглению.
- Другие делятся успешным опытом: при жёсткой архитектуре, тестах и узких промптах Claude Code и аналоги дают 9/10 полезных патчей.
- Утверждение, что LLM «заставляют» выбирать мейнстек, опровергают разработчики на Clojure, D и других нишевых языках.
- Общий вывод: LLM — мощный инструмент, но требует экспериментов, критического ревью и понимания своих ограничений; без этого он быстро превращается в источник технического долга.
Live: GPT-5
-
Introducing GPT-5 — YouTube
-
Пропустить навигацию
-
Поиск / Поиск голосом
-
Войти
-
Смотреть позже • Поделиться • Копировать ссылку • Покупки
-
Нажмите, чтобы включить звук • 2x
-
Если воспроизведение не началось, перезапустите устройство.
-
Вы вышли из аккаунта. Просмотры могут влиять на рекомендации на ТВ. Чтобы избежать этого, отмените и войдите на YouTube на компьютере.
-
Отмена • Подтвердить
-
37:35 • 7 августа, 10:00 GMT-7
-
Далее • Прямой эфир запланирован • Играть
Introducing GPT-5
- OpenAI • Подтверждено • 1,65 млн подписчиков
- Подписаться • Подписаны
- 6 522 ожидают • Запланировано на 7 авг. 2025
- 1K • Поделиться • Скачать • Сохранить
- Комментарии отключены
Описание
-
Introducing GPT-5
-
Присоединяйтесь к Сэму Альтману, Грегу Брокману, Себастьену Бюбеку, Марку Чену, Янну Дюбуа, Брайану Фиоке, Ади Ганешу, Оливеру Годеману, Саачи Джайн, Кристине Каплан, Тине Ким, Элейн Я Ле, Фелипе Миллону, Мишель Покрасс, Якубу Пахоцки, Максу Шварцеру, Ренни Сонгу, Жожену Вану — они представят и продемонстрируют GPT‑5.
-
OpenAI: Видео • О канале • Twitter • LinkedIn
Комментарии (92)
- Участники обсуждают качество ИИ для повседневного программирования: один отмечает сильное превосходство Anthropic (Sonnet 3.7/4 и Claude Code), причём в Cursor опыт хуже, чем в самом Claude Code, и OpenAI‑модели он почти не использует.
- Есть надежда, что GPT‑5 сократит отставание OpenAI, хотя мнения пользователей сильно расходятся.
- Другой комментатор ожидает, что грядущие анонсы покажут радикальное влияние на рынок: веб‑ и JS/TS‑разработчики могут стать частично или полностью невостребованными.
- При этом подчёркивается, что речь ещё не об «AGI» — максимум о ~10% от обещанных возможностей AGI.
- Отмечается ночной «слив», указывающий на фокус на кодинге; предполагается, что для названия «GPT‑5» OpenAI должен предложить существенное преимущество над Anthropic.