Production RAG: what I learned from processing 5M+ documents
За 8 месяцев работы над RAG-системами для обработки 13+ миллионов документов автор выявил ключевые факторы успеха. Начав с типового стека Langchain + Llamaindex по туториалам, команда столкнулась с тем, что прототип на 100 документах показывал отличные результаты, а на полном наборе данных - провальные. Основные улучшения, давшие наибольший эффект: генерация множества семантических и ключевых запросов параллельно с исходным, реранкинг (оптимальное соотношение 50:15 чанков), тщательная настройка чанкинга с сохранением логических единиц, добавление метаданных в контекст LLM и маршрутизация запросов, не требующих поиска по базе.
Технологический эволюция включала переход от Azure к Pinecone, а затем Turbopuffer для векторного хранилища, от Cohere к Zerank для реранкинга, и от GPT-4.1 к GPT-5 и обратно. Автор подчеркивает, что реранкинг - "самые ценные 5 строк кода", а на чанкинг уходит большая часть времени. Весь опыт был упакован в open-source проект agentset под лицензией MIT.