The G in GPU is for Graphics damnit
Автор делится опытом оптимизации модели Physarum polycephalum (слизевика) на GPU с использованием Triton. Модель имитирует поведение агентов, оставляющих феромонные следы и реагирующих на их концентрацию. Изначальная реализация на PyTorch страдала от накладных расходов на инициализацию и низкой утилизации GPU из-за мелких операций.
Профилирование выявило, что основные узкие места — этапы сенсоров, движения и диффузии. Автор переписал ключевые части на Triton, объединив сенсорный и двигательный этапы в один ядро и используя атомарные операции для депозиции феромонов. Это позволило добиться 10-кратного ускорения и полной загрузки GPU, подтвердив, что Triton эффективен для задач с мелкозернистым параллелизмом.