LoRA Without Regret
LoRA позволяет эффективно дообучать большие языковые модели, обновляя лишь малую часть параметров через низкоранговые матрицы, что экономит вычислительные ресурсы и память. Эксперименты показывают, что на небольших и средних наборах данных для обучения с учителем и reinforcement learning LoRA достигает той же производительности, что и полное дообучение, при условии корректной настройки.
Ключевые факторы успеха LoRA включают применение ко всем слоям модели (включая MLP и MoE), а не только к attention-слоям, и осторожный подбор размера батча — слишком большие батчи могут ухудшить результаты. Однако при превышении ёмкости адаптера данными или в сценариях, напоминающих предобучение, LoRA проигрывает полному дообучению.