The quality of AI-assisted software depends on unit of work management
Качество ПО, создаваемого с помощью ИИ, зависит от управления единицами работы. Основная проблема — не интеллект моделей, а предоставление правильного контекста.
Андрей Карпати описал работу ИИ-инженера как «держать ИИ на коротком поводке». Это означает разбивать задачи на небольшие конкретные части.
Правильный размер единицы работы учитывает контекст. Контекстное окно ИИ влияет на качество выходных данных: слишком мало информации ведёт к галлюцинациям, слишком много — к ухудшению качества из-за расфокусировки. Разделение задачи на оптимальные единицы работы — ключевой способ улучшить контекст и качество кода.
Правильный размер единицы работы контролирует распространение ошибок. При 5% вероятности ошибки за шаг, после 10 шагов шанс успеха падает до 59,9%. Современные модели, такие как GPT-5, демонстрируют успех в 70% для длительных задач, но это достигается в стабильных средах, тогда как реальные задачи часто происходят в изменяющихся условиях.