Collecting All Causal Knowledge
CauseNet — проект по сбору всей человеческой причинной информации из веба и отделению знаний от убеждений.
Получено 11,6 млн причинных связей (точность ≈ 83 %) из полуструктурированных и неструктурированных источников. Построен первый крупный граф причинности открытого домена.
Данные
- CauseNet-Full — полный набор (11,6 млн связей, 12,2 млн понятий, 1,8 ГБ).
- CauseNet-Precision — высокоточная выборка (200 тыс. связей, 80 тыс. понятий, 135 МБ).
- CauseNet-Sample — мини-пример (264 связи, 524 понятия, 54 КБ).
Модель
Концепты соединяются отношениями «причина → следствие».
Каждая связь снабжена метаданными: источник, предложение, шаблон, временная метка и т.д.
Примеры
{
"causal_relation": {
"cause": {"concept": "smoking"},
"effect": {"concept": "disability"}
},
"sources": [{
"type": "clueweb12_sentence",
"payload": {
"sentence": "In Canada, smoking is the most important cause of preventable illness...",
"path_pattern": "[[cause]]/N\t-nsubj\tcause/NN\t+nmod:of\t[[effect]]/N"
}
}]
}
Применение: ответы на причинные вопросы, аргументация, многошаговые выводы.