Hacker News Digest

28 августа 2025 г. в 11:38 • chizkidd.github.io • ⭐ 265 • 💬 26

OriginalHN

#machine-learning#python#numpy#linear-algebra#optimization#deep-learning#probability#statistics#transformers#convolutional-neural-networks

Important machine learning equations

Байес

$$P(A|B)=\frac{P(B|A)P(A)}{P(B)}$$ Обновляем вероятность гипотезы при новых данных.

def bayes(p_d, p_t_d, p_t_nd):
    p_t = p_t_d*p_d + p_t_nd*(1-p_d)
    return p_t_d*p_d / p_t

Энтропия

$$H(X)=-\sum_x P(x)\log P(x)$$ Измеряем неопределённость распределения.

import numpy as np
H = lambda p: -np.sum(p*np.log(p, where=p>0))

KL-дивергенция

$$D_{\text{KL}}(P|Q)=\sum_x P(x)\log\frac{P(x)}{Q(x)}$$ Сколько бит «лишних» нужно, если вместо истинного распределения $P$ использовать $Q$.

Кросс-энтропия

$$H(P,Q)=-\sum_x P(x)\log Q(x)$$ Используется как лосс в классификации.

Линейная алгебра

Линейное преобразование

$$\mathbf{y}=A\mathbf{x}$$ Матрица $A$ переводит вектор $\mathbf{x}$ в пространство признаков.

Собственные значения и векторы

$$A\mathbf{v}=\lambda\mathbf{v}$$ Направления, вдоль которых преобразование лишь растягивает/сжимает.

SVD

$$A=U\Sigma V^\top$$ Разложение на ортогональные и диагональные матрицы; основа PCA и рекомендательных систем.

Оптимизация

Градиентный спуск

$$\theta_{t+1}=\theta_t-\eta\nabla_\theta J(\theta)$$ Шагаем против градиента, чтобы минимизировать функцию потерь $J$.

Backprop

$$\frac{\partial L}{\partial W^{(l)}}=\delta^{(l)}(a^{(l-1)})^\top$$ Цепное правило для обучения нейросетей.

Функции потерь

MSE

$$\text{MSE}=\frac{1}{n}\sum_i (y_i-\hat y_i)^2$$ Классика регрессии.

Кросс-энтропия

$$L=-\sum_i y_i\log \hat y_i$$ Стандарт для классификации.

Продвинутые темы

Диффузия

$$q(x_t|x_{t-1})=\mathcal N(x_t;\sqrt{1-\beta_t}x_{t-1},\beta_t I)$$ Постепенное добавление шума и обратное восстановление.

Свертка

$$(f*g)[n]=\sum_m f[m]g[n-m]$$ Извлечение локальных паттернов в CNN.

Softmax

$$\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_j e^{z_j}}$$ Превращает логиты в вероятности.

Attention

$$\text{Attention}(Q,K,V)=\text{softmax}\left(\frac{QK^\top}{\sqrt d_k}\right)V$$ Взвешенная сумма значений по релевантности запроса и ключей.


Краткий конспект ключевых уравнений ML: от вероятностей до трансформеров, с кодом и интуицией.