Building AI products in the probabilistic era
Строим продукты ИИ в эпоху вероятностей
Мы живём в момент, когда инструменты обогнали наши модели их понимания. ИИ изменил саму природу софта: вместо детерминированной функции F: X → Y
мы получаем статистическое распределение.
Классическая эра
До ИИ продукты были предсказуемы: нажал «отправить» — сообщение ушло. Именно поэтому вся отрасль строилась на 100 % надёжности: SLO-дэшборды, тесты, аккуратные рефакторинги. PM и дизайн тоже сводились к прокачке воронок с заранее заданными входами и целями.
Новая реальность
С ИИ выход y
стал вероятностным: один и тот же промпт может дать разные ответы. Это ломает привычные процессы:
- Инженерия перестаёт быть «написать код → проверить тесты». Теперь нужно управлять распределениями, подбирать промпты, валидировать выборки.
- Продукт больше не сводится к фиксированному набору фич. Модель сама генерирует новые пути ценности, а цели могут меняться по ходу использования.
- Организация требует новых ролей: «prompt engineer», «eval lead», «AI safety analyst».
Что делать
- Отказаться от 100 % SLO. Достаточно 95 % качества при 10× скорости релизов.
- Оценивать не функцию, а распределение. A/B тесты уступают место оценке статистических хвостов.
- Строить обратную связь в цикл. Пользовательские данные теперь не просто метрика, а способ «дообучать» поведение модели на лету.
Точно так же, как раньше победили те, кто принял «нулевую себестоимость» интернета, теперь выиграют команды, которые освоят вероятностное мышление.