Hacker News Digest

21 августа 2025 г. в 18:42 • giansegato.com • ⭐ 138 • 💬 70

OriginalHN

#llm#probabilistic#machine-learning#slo#ab-testing#prompt-engineering#statistics

Building AI products in the probabilistic era

Строим продукты ИИ в эпоху вероятностей

Мы живём в момент, когда инструменты обогнали наши модели их понимания. ИИ изменил саму природу софта: вместо детерминированной функции F: X → Y мы получаем статистическое распределение.

Классическая эра

До ИИ продукты были предсказуемы: нажал «отправить» — сообщение ушло. Именно поэтому вся отрасль строилась на 100 % надёжности: SLO-дэшборды, тесты, аккуратные рефакторинги. PM и дизайн тоже сводились к прокачке воронок с заранее заданными входами и целями.

Новая реальность

С ИИ выход y стал вероятностным: один и тот же промпт может дать разные ответы. Это ломает привычные процессы:

  • Инженерия перестаёт быть «написать код → проверить тесты». Теперь нужно управлять распределениями, подбирать промпты, валидировать выборки.
  • Продукт больше не сводится к фиксированному набору фич. Модель сама генерирует новые пути ценности, а цели могут меняться по ходу использования.
  • Организация требует новых ролей: «prompt engineer», «eval lead», «AI safety analyst».

Что делать

  1. Отказаться от 100 % SLO. Достаточно 95 % качества при 10× скорости релизов.
  2. Оценивать не функцию, а распределение. A/B тесты уступают место оценке статистических хвостов.
  3. Строить обратную связь в цикл. Пользовательские данные теперь не просто метрика, а способ «дообучать» поведение модели на лету.

Точно так же, как раньше победили те, кто принял «нулевую себестоимость» интернета, теперь выиграют команды, которые освоят вероятностное мышление.