Hacker News Digest

16 августа 2025 г. в 02:39 • userjot.com • ⭐ 135 • 💬 62

OriginalHN

#llm#agents#cloud#aws#lambda#prometheus#grafana#monitoring#microservices#workflow

Best Practices for Building Agentic AI Systems

Двухуровневая модель

Основной агент ведёт диалог, помнит контекст, раздаёт задачи.
Под-агенты — чистые функции: получили вход, вернули результат, забыли всё.
Больше двух уровней — лишние точки отказа.

Под-агенты без состояния

Каждый вызов — как вызов функции:

  • одинаковый вход → одинаковый выход
  • легко кешировать, тестировать, запускать параллельно
    Пример сообщения:
{"task": "sentiment", "data": [...], "constraints": {"timeout": 5}}

Разбиение задач

  • Вертикальное: последовательные шаги (сбор → извлечение → сравнение).
  • Горизонтальное: параллельные ветки (исследовать 5 конкурентов одновременно).
    Смешиваем: сначала параллельная категоризация фидбека, потом последовательная приоритизация.

Протокол общения

Каждая команда содержит:

  • цель, входные данные, ограничения, формат вывода.
    Ответ: status, result, confidence, processing_time.
    Болтовни и «помни, что мы обсуждали» — нет.

Специализация агентов

  • Research — поиск по базе фидбека.
  • Analysis — извлечение тем и настроений.
  • Summary — генерация отчётов и changelog.
    Один агент = одна чёткая функция.

Оркестрация

  • Round-robin — когда порядок важен.
  • Priority queue — сначала критичные фидбеки.
  • Fan-out/fan-in — параллельные под-агенты, потом сбор результатов.
    Состояние хранит только основной агент; под-агенты не знают о существовании друг друга.

Управление контекстом

  • Сжатие: оставляем только релевантные куски.
  • Слайды: отправляем под-агенту только нужную подборку.
  • Версионирование: каждый результат имеет id, чтобы легко откатиться.

Обработка ошибок

  • Повторы с экспоненциальной задержкой (до 3 раз).
  • Fallback-агенты: если «анализатор» упал, включаем «резервный».
  • Circuit breaker: после N ошибок отключаем агента и пишем алерт.

Производительность

  • Кешируем по хешу запроса.
  • Параллельные вызовы без блокировок.
  • Пакетная обработка: отправляем 50 фидбеков за раз, а не по одному.

Мониторинг

Отслеживаем:

  • latency под-агентов,
  • точность (сравниваем с разметкой),
  • частота ошибок,
  • объём контекста (токенов).
    Всё пишем в Prometheus + Grafana.

Уроки из продакшена

  • Начинайте с 2–3 под-агентов, добавляйте постепенно.
  • Пишите юнит-тесты для каждого под-агента.
  • Не давайте агентам доступ к внешним API без rate-limit.
  • Держите промпты в git; версионируйте как код.

Принципы

  1. Простота > масштаб.
  2. Чистые функции > разделяемое состояние.
  3. Структурированные сообщения > свободный текст.
  4. Мониторинг с первого дня > дебаг в проде.

Частые ошибки

  • «Умные» под-агенты с памятью → гонки и непредсказуемость.
  • Слишком большой контекст → таймауты и лишние токены.
  • Отсутствие таймаутов → зависшие цепочки.
  • Игнорирование кеширования → лишние $$$ на API.

Как начать

  1. Определите 1–2 ключевые задачи (например, «суммаризировать фидбек»).
  2. Создайте под-агентов: research, summarize.
  3. Напишите структурированные схемы входа/выхода.
  4. Покройте тестами, добавьте метрики.
  5. Подключите к реальному потоку данных и наблюдайте.