LLM Inflation
-
Недавние записи
Архив блога -
Одно из ключевых достижений вычислений — сжатие данных: мы уменьшаем размер, сохраняя всю информацию (без потерь), передаём и восстанавливаем исходник.
-
Раньше сжатие было необходимо: носители малы, сети медленны. Сейчас это не всегда критично, но по‑прежнему полезно: эта страница почти наверняка пришла к вам в сжатом виде, что ускоряет загрузку и снижает нагрузку на сервер.
-
Забавно, что в 2025 мы нередко делаем противоположное. Пример: Бобу нужен новый рабочий компьютер. Его просят написать 4 абзаца обоснования. Он просит LLM сгенерировать текст и отправляет менеджеру.
-
Менеджер получает длинное письмо, копирует его в LLM и просит резюме в одном предложении: «Нужен новый компьютер, старый медленный и мешает продуктивности». Заявку одобряют.
-
Я называю это «инфляцией LLM»: легко превращать короткое и простое в длинное и видимо глубокое — и обратно, длинное и «глубокое» в короткое и простое.
-
Это не упрёк LLM. Но стоит задуматься, почему мы раздуваем контент: в лучшем случае поощряем туманность и трату времени; в худшем — скрываем отсутствие ясной мысли. LLM лишь обнажают масштаб. Возможно, это подтолкнёт нас к изменениям!
-
2025‑08‑06 10:50 — Более раннее
-
Обновления: Mastodon, Twitter, RSS, e‑mail
-
Сноски:
И, разумеется, теория информации, но здесь важны практические эффекты. -
Комментарии